X
XLinkedinWhatsAppTelegramTelegram
0

Reduction of greenhouse gas emissions in the factory and on the farm

The compound feed industry is one of the stakeholders having a role in minimizing the environmental impact while meeting the demand for high quality and cost effective products.

Greenhouse gas emission



The compound feed industry is one of the stakeholders having a role in minimizing the environmental impact while meeting the demand for high quality and cost effective products. It is important to find the right balance between carbon foot print linked to the production of feed and the environmental impact linked to its consumption at the farm.

Agriculture is an important contributor to the production of greenhouse gases, which contribute to the climate change. These are carbon dioxide from energy consumption, methane from livestock and nitrous oxide from cultivated land and organic manure. According to the report Livestock’s Long Shadow (FAO, 2006), globally, livestock production is responsible for 18% of greenhouse gas emissions. From those, 13% are from extensive livestock production systems (grazing cattle, sheep and goats) and 5% from intensive livestock production systems (pork, poultry and dairy). The contribution of the various part of the production chain in an intensive system are: 56% crop contribution, 0.05% transport, 0.5-2.4% industrial processing, 42% animal production. Therefore, transport and industrial processing are far less important than crop cultivation and animal production. However, in addition to the direct emissions by the feed industrial process, the feed industry may also facilitate the reduction of emissions by the animal production through improved feed conversion rate and reduction of methane emissions.



a. Emissions by the feed industrial process:



The greenhouse gas emissions from the feed plant are almost exclusively related to the energy use. There is no standardised method or calculation or actual standard to evaluate the carbon footprint of a feed. Therefore different national feed associations are conducting collaborative studies to establish common rules to estimate the major parameters (FEFAC, 2009).

The key is the development of realistic technologies that lead to a sustainable production. A solid and prompt implementation is feasible if the technologies are coupled with an efficient use of energy, i.e. a reduced cost of production. Feed manufacturing requires power mostly for grinding and pelleting. Energy savings are an essential driver for increased competitiveness, and thus that has been a target over the years. However there are some steps requiring high energy inputs (extrusion and heat treatments) that report physiological benefits, better feed conversion, an improved feed safety and environmental impact at the farm level. Therefore, further reductions in energy consumption are limited at the manufacturing process.

Some potential areas are the specialization of plants for species; efficient transportation of raw materials by increasing the rail shipment; and shifting to locally produced raw materials.

b. Emissions by the animal:



Livestock production generates a number of emissions to the air (methane, ammonia and nitrous oxide) or to the soil (nitrate, phosphates and heavy metals). That is a key issue in certain areas with high human population and high animal density that affects the legislation and public acceptance of the livestock production. Composition of feed has a significant effect on the composition of the emissions.

Different nutritional strategies are available to reduce the emission of contaminants. Some of these strategies are already implemented in the industry because they contribute to the reduction of cost. The most important ones are:
  • Use of low protein diets supplemented with synthetic aminoacids.
  • Use of net energy and digestible aminoacids in feed formulation.
  • Use of ideal protein.
  • Feeding programs suited to productivity, breed and sex.
  • Multi-stage feeding.
  • Use of low levels of digestible phosphorus (P).
  • Use of inorganic sources of P with high digestibility.
  • Phytase supplementation.
  • Use of specific additives.
Use of low protein diets is probably the most effective nutritional strategy for the current environmental situation where nitrogen (N) receives much of the attention. Multi-stage feeding has also important benefits from economical and environmental standpoints. Use of low protein diets in combination with multi-stage feeding suited to productivity, breed, sex and weight of the animals are recognized as very effective procedures in the reduction of N and P in the manure. Recommendations on these strategies are detailed in the BREF document (2003) as Best Available Techniques (BAT’s) for an integrated pollution prevention and control in intensive rearing of poultry and pigs.

Nutritional strategies are also effective to reduce the emission in the air. Reduction of ammonia in the slurry reduces the emissions. As mentioned before, low protein diets are effective to reduce N emission but also reduce aromatic components rich in sulfur (mercaptans / SH2). Acidification of urine also contributes to minimize ammonia emission to the air. Each 0.1 points of pH reduces the emission between 5 and 20%. Urine can be acidified through changes in dietary electrolyte balance or through the use of acid salts in the feed. Use of fiber and additives like prebiotics, FOS are also effective in the ammonia emission and odor problems.

Other than these specific nutritional strategies, one of the most efficient way to reduce total emissions is to increase feed efficiency. An improved feed efficiency reduces the demand for feed resources, lowers production costs and decreases the amounts of manure (N and P emissions) per animal. Feed efficiency can be improved by implementing different procedures during the feed manufacturing process:
  • Pelleting of feed. Feed efficiency of a pelleted feed reduces 5% the nutrient excretion compared to a mash one.
  • Minimize the waste of feed during the manufacturing, transportation, storage and distribution to the farm. The quantity of feed that is wasted on a farm can be very variable, being 5% in the best of cases. The most important critical points are: the reduction of dust generated on the farm, which can represent a direct loss of 1%; the control of the water entrance points of the tank, whether it is for cracks or for badly closed caps, or simply for condensation, which can have a devastating effect due to the growth of fungi, bacteria and the presence of mycotoxins; the correct maintenance of the distribution system and the design of the hoppers which allow an easy regulation; and a good control of rodents and birds.
  • Efficient use of water on the farm to reduce the volume of manure generated.
In short, the most practical details of livestock production are extremely important, for the true calculation and improvement of the carbon footprint of meat products.

Article Comments

This area is not intended to be a place to consult authors about their articles, but rather a place for open discussion among pig333.com users.
Leave a new Comment

Access restricted to 333 users. In order to post a comment you must be logged in.

You are not subscribed to this list Swine News

Swine industry news in your email

Log in and sign up on the list

Related articles

Comparison of ammonia and greenhouse gas emissions from fattening pigs kept either on partially slatted floor in cold conditions or on fully slatted floor in thermoneutral conditions

26-May-2010
Continuous measurements of ammonia and greenhouse gas were achieved on exhaust air from two fattening rooms differing by the type of floor (totally slatted vs partially slatted floor) and the ambient temperature. Temperature was regulated at 18°C in the room with partially slatted floor (room CP18) and 24°C in the room with fully slatted floor (CI24).

European Union - New European research project on greenhouse gas balance in agriculture and forestry

08-Feb-2010
On 27 January a new large European project on greenhouse gas balance in agriculture and forestry was launched. The ambitious aim of this project is to establish a greenhouse gas budget for Europe, including the order of magnitudes of various greenhouse gas sources and sinks, their regional distribution, and their temporal dynamics. The project tries to separate human-related factors like land use from natural factors like weather and climatic variability. When we understand the processes better, we can make better suggestions as to what we need to do in agriculture and forestry to keep their effect on the climate balance positive.

USA - EPA to require greenhouse gas reporting

25-Sep-2009
On Jan. 1, 2010, the U.S. Environmental Protection Agency will, for the first time, require large emitters of heat-trapping emissions to begin collecting greenhouse gas data under a new reporting system. This new program will cover approximately 85 percent of the nation's greenhouse gas emissions and apply to roughly 10,000 facilities.

USA - EPA Finds Greenhouse Gases Pose Threat to Public Health, Welfare

20-Apr-2009
After a thorough scientific review ordered in 2007 by the U.S. Supreme Court, the Environmental Protection Agency issued a proposed finding Friday that greenhouse gases contribute to air pollution that may endanger public health or welfare. The proposed finding, which now moves to a public comment period, identified six greenhouse gases that pose a potential threat.

USA - Greenhouse gas emissions reporting rule

17-Mar-2009
The U.S. Environmental Protection Agency last week issued a proposed rule that would require businesses, including livestock operations, to report emissions of carbon dioxide, methane and nitrous oxide — the so-called greenhouse gases. Livestock operations that emit 25,000 metric tons or more of those gases annually would be subject to the regulation.
You are not subscribed to this list pig333.com in 3 minutes

Weekly newsletter with all the pig333.com updates

Log in and sign up on the list