X
XLinkedinWhatsAppTelegramTelegram
0
Read this article in:

Automatic weight estimation of individual pigs using image analysis

Overall, video imaging of fattening pigs appeared promising for real-time weight and growth monitoring. In this study the weight could be estimated with an accuracy of 97.5% in a group level.

30 April 2015
X
XLinkedinWhatsAppTelegramTelegram
0

Continuous monitoring of weight is one of the essential methods to ensure pigs enjoy a good health. The purpose of this work was to investigate feasibility of an automated method to estimate weight of individual pigs by using image processing.

This study comprised measurements on four pens of grower pigs, and each consisting of 10 pigs. At the start of the experiments pigs weighed on average 23 ± 4.4 kg (mean ± SD) and 45 ± 6.5 kg at the end. Each pen was monitored by a top-view CCD camera. For validation purposes, the experiment was repeated once. Individual pigs were automatically identified by their unique painting patterns using shape recognition techniques. The process of weight estimation was as follows: First, to localize pigs in the image, an ellipse fitting algorithm was employed. Second, the area the pig was occupying in the ellipse was calculated. Finally, using TF modelling the weight of pigs was estimated.

Overall, video imaging of fattening pigs appeared promising for real-time weight and growth monitoring. In this study the weight could be estimated with an accuracy of 97.5% in a group level (standard error of 0.82 kg) and 96.2% individually (standard error of 1.23 kg).This is significant since the existing automated tools have currently a maximum accuracy of 95% (standard error of 2 kg) in practical setups and 97 % (standard error of 1 kg) in walk-through systems (when pigs are forced to pass a corridor one by one) on average.

Future work should focus on developing specific algorithms to account for the effect of gender and genotype on body surface area and body weight since these factors affect the model parameters for weight estimation.

Mohammadamin K., Bahr C., Ott S., Moons C.P.H., Niewold T., Ödberg F.O., Berckmans D. Automatic weight estimation of individual pigs using image analysis. Computers and Electronics in Agriculture vol:107 pages:38-44

Article Comments

This area is not intended to be a place to consult authors about their articles, but rather a place for open discussion among pig333.com users.
Leave a new Comment

Access restricted to 333 users. In order to post a comment you must be logged in.

You are not subscribed to this list pig333.com in 3 minutes

Weekly newsletter with all the pig333.com updates

Log in and sign up on the list

You are not subscribed to this list Swine News

Swine industry news in your email

Log in and sign up on the list