X
XLinkedinWhatsAppTelegramTelegram
0

Determining an optimum lysine:calorie ratio for barrows and gilts in a commercial finishing facility

The dietary lysine optimization may reduce feed cost per kilogram of gain in pigs during the growing-finishing phase

14 January 2010
X
XLinkedinWhatsAppTelegramTelegram
0

Understanding the effects of increasing dietary Lys on grow-finish performance is a core component of developing cost-effective grower-finishing feeding strategies in commercial pig production. The objective of the present study was to determine an optimum Lys:calorie ratio (g of total dietary Lys/Mcal of ME) for 35- to 120-kg barrows and gilts in a commercial finishing environment.

Seven (3 barrows and 4 gilts) trials were conducted using randomized complete block designs (42 pens per trial, a total of 7,801 pigs). Six treatments with increasing Lys:calorie ratio were used in each study. Diets were corn-soybean meal-based with 6% choice white grease. Lysine:calorie ratios were attained by adjusting the amount of corn and soybean meal. No crystalline Lys was used. In barrow trial 1 (43 to 70 kg), increasing the Lys:calorie ratio (2.21, 2.55, 2.89, 3.23, 3.57, and 3.91) increased (quadratic, P < 0.01) ADG, G:F, income over feed costs (IOMFC), and feed cost per kilogram of gain, and decreased (linear, P < 0.01) backfat. In barrow trial 2 (69 to 93 kg), increasing the Lys:calorie ratio (1.53, 1.78, 2.03, 2.28, 2.53, and 2.78) improved (linear, P < 0.01) ADG, G:F, and IOMFC, and decreased (quadratic, P < 0.01) backfat. In barrow trial 3 (102 to 120 kg), increasing the Lys:calorie ratio (1.40, 1.60, 1.80, 2.00, 2.20, and 2.40) increased (linear, P < 0.03) ADG and G:F, and numerically improved (linear, P = 0.12) IOMFC. In gilt trials 1 (35 to 60 kg), 2 (60 to 85 kg), and 3 (78 to 103 kg), increasing the Lys:calorie ratio (2.55, 2.89, 3.23, 3.57, 3.91, and 4.25; 1.96, 2.24, 2.52, 2.80, 3.08, and 3.36; and 1.53, 1.78, 2.03, 2.28, 2.53, and 2.78, respectively) improved (quadratic, P < 0.04) ADG, G:F, IOMFC, and feed cost per kilogram of gain, and decreased (linear, P < 0.01) backfat. In gilt trial 4 (100 to 120 kg), increasing the Lys:calorie ratio (1.40, 1.60, 1.80, 2.00, 2.20, and 2.40) improved (linear, P < 0.02) ADG, G:F, LM depth, IOMFC, and (quadratic, P < 0.06) feed cost per kilogram of gain.

These studies suggest that feed cost per kilogram of gain decreases, and reductions in biological performance and IOMFC are rather modest when feeding marginally Lys-deficient diets early (35 to 70 kg) in the grower-finishing period compared with the more severe penalties in growth and economic performance of feeding marginally deficient diets in the late finishing period (70 kg to slaughter). The equations (Lys:calorie ratio = −0.0133 x BW, kg, + 3.6944 and = −0.0164 x BW, kg, + 4.004, for barrows and gilts, respectively) best describe our interpretation of the Lys:calorie ratio that met biological requirements and optimized IOMFC on these pigs in this commercial finishing environment.

RG Main, SS Dritz, MD Tokach, RD Goodband, and JL Nelssen. Determining an optimum lysine:calorie ratio for barrows and gilts in a commercial finishing facility. 2008. Journal of Animal Science. 86:2190-2207. doi:10.2527/jas.2007-0408

Article Comments

This area is not intended to be a place to consult authors about their articles, but rather a place for open discussion among pig333.com users.
Leave a new Comment

Access restricted to 333 users. In order to post a comment you must be logged in.

You are not subscribed to this list Swine News

Swine industry news in your email

Log in and sign up on the list

Related articles

You are not subscribed to this list Swine News

Swine industry news in your email

Log in and sign up on the list