The objective of this study was to determine the response to the increment of 2 sources of dietary fat on lactating sow and progeny performance during high ambient temperatures. Data were collected from 391 sows from June to September in a 2,600-sow commercial unit in Oklahoma. Sows were randomly assigned to a 2 x 3 factorial arrangement of treatments and a control diet. Factors included 1) fat sources, animal-vegetable blend (A-V) and choice white grease (CWG), and 2) fat levels (2%, 4%, and 6%). The A-V blend contained 14.5% FFA with an iodine value of 89, peroxide value of 4.2 mEq/kg, and anisidine value of 23, whereas CWG contained 3.7% FFA with an iodine value of 62, peroxide value of 9.8 mEq/kg, and anisidine value of 5. Diets were corn-soybean meal based, with 8.0% distillers dried grains with solubles and 6.0% wheat middlings, and contained 3.56-g standardized ileal digestible Lys/Mcal ME. Sows were balanced by parity, with 192 and 199 sows representing parity 1 and parity 3 to 5, respectively.
Feed refusal increased linearly (P < 0.001) with the addition of supplemental fat, but feed and energy intake increased linearly (P < 0.01) with increasing dietary fat. Sows fed CWG diets had reduced (linear, P < 0.05) BW loss during lactation. Litter growth rate was not affected by additional dietary fat. Addition of CWG to the diets improved G:F (sow and litter gain relative to feed intake) compared with the G:F of sows fed the control diet or the diets containing the A-V blend (0.50, 0.43, and 0.44, respectively; P < 0.05). Gain:ME (kg/Mcal ME) was greater (P < 0.05) for CWG (0.146) than A-V blend (0.129) but was not different from that of the control diet (0.131). Addition of A-V blend and CWG both improved (P < 0.05) conception and farrowing rates and subsequent litter size compared with the control diet. In conclusion, energy intake increased with the addition of fat. The A-V blend contained a greater amount of aldehydes (quantified by anisidine value) and was more susceptible to oxidation, resulting in reduced feed efficiency than CWG.

Subsequent litter size and reproductive performance was improved by inclusion of both sources of fat in diets fed to lactating sows.
DS Rosero, E van Heugten, J Odle, C Arellano, RD Boyd. 2012. Response of the modern lactating sow and progeny to source and level of supplemental dietary fat during high ambient temperatures. Journal of Animal Science, 90:2609-2619. doi:10.2527/jas2012-4242.