The African swine fever virus (ASFV) is currently causing a worldwide pandemic of a highly lethal disease in domestic swine and wild boar. Currently, recombinant ASF live-attenuated vaccines based on a genotype II virus strain are commercially available in Vietnam. With 25 reported ASFV genotypes in the literature, it is important to understand the molecular basis and usefulness of ASFV genotyping, as well as the true significance of genotypes in the epidemiology, transmission, evolution, control, and prevention of ASFV. Historically, genotyping of ASFV was used for the epidemiological tracking of the disease and was based on the analysis of small fragments that represent less than 1% of the viral genome.
Methods: The predominant method for genotyping ASFV relies on the sequencing of a fragment within the gene encoding the structural p72 protein. Genotype assignment has been accomplished through automated phylogenetic trees or by comparing the target sequence to the most closely related genotyped p72 gene. To evaluate its appropriateness for the classification of genotypes by p72, we reanalyzed all available genomic data for ASFV.
Results: We conclude that the majority of p72-based genotypes, when initially created, were neither identified under any specific methodological criteria nor correctly compared with the already existing ASFV genotypes.
Conclusion: Based on our analysis of the p72 protein sequences, we propose that the current twenty-five genotypes, created exclusively based on the p72 sequence, should be reduced to only six genotypes. To help differentiate between the new and old genotype classification systems, we propose that Arabic numerals (1, 2, 8, 9, 15, and 23) be used instead of the previously used Roman numerals. Furthermore, we discuss the usefulness of genotyping ASFV isolates based only on the p72 gene sequence.
Spinard E, Dinhobl M, Tesler N, Birtley H, Signore AV, Ambagala A, Masembe C, Borca MV, Gladue DP. A Re-Evaluation of African Swine Fever Genotypes Based on p72 Sequences Reveals the Existence of Only Six Distinct p72 Groups. Viruses. 2023; 15(11):2246. https://doi.org/10.3390/v15112246