X
XLinkedinWhatsAppTelegramTelegram
0
Read this article in:

Common antimicrobial resistant Campylobacter coli population in antimicrobial-free (ABF) and commercial swine systems

Since the different pig populations never came into contact, the researchers concluded that the environment must be playing a large role in the continuing survival of antibiotic-resistant C. coli.

26 October 2012
X
XLinkedinWhatsAppTelegramTelegram
0

Researchers from North Carolina State University have found identical strains of antibiotic-resistant Campylobacter Coli (C. coli) in both antibiotic-free (ABF) and conventionally raised pigs. This finding may indicate that these antibiotic-resistant pathogens can persist and thrive in the environment, regardless of antimicrobial usage by pork producers.

The objective of the study was to compare the population biology of antimicrobial resistant (AR) Campylobacter coli isolated from swine reared in the conventional and antimicrobial-free (ABF) swine production systems at farm, slaughter and environment. A total of 200 C. coli isolates selected from fecal, environmental, and carcass samples of ABF (n = 100) and conventional (n = 100) swine production systems were typed by multilocus sequence typing (MLST). Sequence data from seven housekeeping genes was analyzed for the identification of allelic profiles, sequence types (STs) and clonal complex determination. Phylogenetic trees were generated to establish the relationships between the genotyped isolates. A total of 51 STs were detected including two novel alleles (glnA 424 and glyA 464) and 14 novel STs reported for the first time. The majority of the C. coli isolates belonged to ST-854 (ABF: 31, conventional: 17), and were grouped in clonal complex ST-828 (ABF: 68%, conventional: 66%). The mean genetic diversity (H) for the ABF (0.3963+/−0.0806) and conventional (0.4655+/−0.0714) systems were similar. The index of association for the ABF and conventional C. coli populations were close to linkage equilibrium, indicative of a freely recombining population. Identical STs were detected between the pigs and their environment both at farm and slaughter. A minimum spanning tree revealed the close clustering of C. coli STs that originated from swine and carcass with those from the environment.

In conclusion, this study reveals a genotypic diverse C. coli population that shares a common ancestry in the conventional and ABF swine production systems. This could potentially explain the high prevalence of antimicrobial resistant C. coli in the ABF system in the absence of antimicrobial selection pressure.

Quintana-Hayashi MP, Thakur S (2012) Phylogenetic Analysis Reveals Common Antimicrobial Resistant Campylobacter coli Population in Antimicrobial-Free (ABF) and Commercial Swine Systems. PLoS ONE 7(9): e44662. doi:10.1371/journal.pone.0044662

Article Comments

This area is not intended to be a place to consult authors about their articles, but rather a place for open discussion among pig333.com users.
Leave a new Comment

Access restricted to 333 users. In order to post a comment you must be logged in.

You are not subscribed to this list pig333.com in 3 minutes

Weekly newsletter with all the pig333.com updates

Log in and sign up on the list

Related articles

Denmark - Stronger action against Salmonella and Campylobacter in food

02-Jul-2010
The government with the Socialists, Socialist People's Party, Danish People's Party, Liberal Party and Unity signed a new four-year agreement on a continued effort to bacteria in food. There is allocated approx. 25 million kroner a year of effort, which is a strengthening relative to the previous action against Salmonella and Campylobacter. At the same time reinforced efforts against antibiotic resistant bacteria.
You are not subscribed to this list Swine News

Swine industry news in your email

Log in and sign up on the list